Test report of mather.ideniox.com

13th Gen Intel(R) Core(TM) i5-13500 4.5GHz x64


Test factors(n)


# TestsMax value# Factors avgFactors length avgAvg timeMin timeMax timeTotal timeResult
101E11.5127 μs8 μs82 μs267 μs100.000%
1001E22.391.3623 μs2 μs1 ms2 ms100.000%
10001E32.881.74 μs1 μs517 μs4 ms100.000%
100001E43.223 μs0 μs2 ms33 ms100.000%
1000001E53.442.282 μs0 μs4 ms194 ms100.000%
10000001E63.632.542 μs0 μs174 ms2 s 434 ms100.000%
1000001E73.792.793 μs0 μs3 ms273 ms100.000%
1000001E83.923.033 μs1 μs2 ms336 ms100.000%
1000001E94.053.275 μs1 μs2 ms479 ms100.000%
1000001E104.153.59 μs1 μs2 ms877 ms100.000%
1000001E114.243.7318 μs2 μs2 ms1 s 781 ms100.000%
1000001E124.343.9428 μs2 μs4 ms2 s 841 ms100.000%
1000001E134.424.1642 μs2 μs3 ms4 s 211 ms100.000%
1000001E144.494.3775 μs3 μs5 ms7 s 473 ms100.000%
1000001E154.574.58148 μs7 μs11 ms14 s 807 ms100.000%
1000001E164.634.78277 μs6 μs15 ms27 s 740 ms100.000%
1000001E174.74.99465 μs10 μs19 ms46 s 531 ms100.000%
1000001E184.755.2703 μs11 μs27 ms1 m 10 s100.000%
1000001E194.795.416 ms22 μs88 ms11 m 0 s100.000%
1000001E204.865.578 ms36 μs218 ms13 m 45 s100.000%
1000001E214.915.7710 ms56 μs385 ms18 m 18 s100.000%
1000001E224.945.9814 ms61 μs846 ms23 m 51 s100.000%
1000001E2356.1619 ms73 μs1 s 25 ms32 m 9 s100.000%
1000001E245.056.3625 ms77 μs2 s 631 ms43 m 13 s100.000%
1000001E255.086.5435 ms101 μs3 s 481 ms59 m 41 s100.000%
# Tests------Total time-
3011110------3 h 25 m-

Tested the following factorization algorithms

Wheel divison for factors up to 1E7

Brent algorithm for factors up to 1E13


Test randomPrimes(n)


# TestsPrime lengthPrime %# TriesAvg timeMin timeMax timeTotal timeResult
1000001 44.444%2497062 μs0 μs470 μs187 ms100.000%
1000002 23.333%1714845 μs3 μs2 ms518 ms100.000%
1000003 15.888%2506028 μs4 μs429 μs779 ms100.000%
1000004 11.788%34019210 μs6 μs504 μs1 s 44 ms100.000%
1000005 9.292%42997013 μs8 μs456 μs1 s 311 ms100.000%
1000006 7.656%52401616 μs10 μs465 μs1 s 600 ms100.000%
1000007 6.512%61563920 μs13 μs466 μs1 s 977 ms100.000%
1000008 5.663%70229126 μs16 μs4 ms2 s 550 ms100.000%
1000009 5.009%79946937 μs20 μs357 μs3 s 664 ms100.000%
10000010 4.301%88895449 μs31 μs555 μs4 s 854 ms100.000%
10000050 0.867%4556616840 μs402 μs4 ms1 m 23 s100.000%
100000100 0.434%91729353 ms1 ms33 ms6 m 36 s100.000%
100000200 0.216%1838058024 ms6 ms251 ms41 m 12 s100.000%
100000300 0.144%2751240392 ms15 ms1 s 201 ms2 h 34 m100.000%
100000400 0.108%36855912231 ms32 ms2 s 974 ms6 h 25 m100.000%
# Tests------Total time-
1500000------9 h 49 m-

Used the following primaly algorithms

Find factors for values up to 1E23

Miller-Rabin and Baillie probabilistic primaly test up to 1E3000


Test sieve functions


Test name# PrimesSS timeES timeGS timePS timeBF timeTotal timeResult
All algorithms to 1E12376079120182 h 9 m0 μs6 m 42 s9 ms868 μs2 h 16 mPassed
All algorithms to 1E11411805481311 m 51 s0 μs26 s 743 ms3 ms1 ms12 m 17 sPassed
All algorithms to 1E104550525111 m 2 s0 μs2 s 127 ms2 ms810 μs1 m 4 sPassed
PS to 4E182390 μs0 μs0 μs12 s 264 ms1 ms12 s 266 msPassed
All algorithms to 1E9508475345 s 869 ms4 s 757 ms190 ms1 ms811 μs10 s 820 msPassed
PS to 1E182470 μs0 μs0 μs5 s 248 ms1 ms5 s 250 msPassed
PS to 1E172280 μs0 μs0 μs1 s 426 ms1 ms1 s 428 msPassed
All algorithms to 1E85761455627 ms392 ms17 ms1 ms660 μs1 s 40 msPassed
PS to 1E162850 μs0 μs0 μs452 ms1 ms453 msPassed
PS to 1E152680 μs0 μs0 μs148 ms1 ms150 msPassed
All algorithms to 1E766457968 ms42 ms15 ms1 ms455 μs129 msPassed
PS to 3E66690 μs0 μs0 μs969 μs74 ms75 msPassed
PS to 1E143180 μs0 μs0 μs49 ms1 ms50 msPassed
All algorithms to 1E67849811 ms9 ms16 ms1 ms483 μs40 msPassed
PS to 4E5361290 μs0 μs0 μs5 ms15 ms21 msPassed
PS to 3E2690 μs0 μs0 μs64 μs128 μs194 μsPassed
PS to 3E2660 μs0 μs0 μs64 μs120 μs186 μsPassed
PS to 2E2550 μs0 μs0 μs59 μs118 μs178 μsPassed
PS to 2E190 μs0 μs0 μs25 μs74 μs101 μsPassed
PS to 2E180 μs0 μs0 μs30 μs40 μs71 μsPassed
59996 more........................
# Tests-SS timeES timeGS timePS timeBF timeTotal timeResult
60016-2 h 22 m5 s 202 ms7 m 11 s1 m 45 s32 s 83 ms2 h 31 m100.000%

Tested the following prime algorithms

SS: Segmented Sieve

ES: Eratosthenes' Sieve

GS: Gordon's Sieve

PS: Partial Segmented Sieve

BF: Brute force generator


Test Mersenne primes


#nMnDigits
1862432**86243 - 125962

Generated 1 mersenne primes

Used Lucas Lehmer Primaly Test

It took 1 m 54 s


It took 15 h 48 m to generate the report.